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SOLUTION OF AN INVERSE PROBLEM OF CAVITATIONAL FLOW AROUND A CURVILINEAR ARC 
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ABSTRACT: The problem of the structure of the cavitational flow 
around a curvilinear arc in accordance with the Ryabushinskii scheme 
with a given velocity distribution is considered. The inverse prob!em 
was formuIated and solved for the first time for the case of separated 
flow in accordance with the Kirchhoff scheme in an unbounded stream 
by G. G. Tumashev [1], and by O. N. Pykhteev [2] for an arc in a 
channel. It was also the latter who solved the inverse problem of flow 
around an arc in accordance with the scheme of Gil'berg and Efros [8]. 

1. Let us consider cavitational flow of a plane stream ofanideal in- 
compressible fluid around a symmetric curvilinear arc L in accordance 
with the RyabushinsMi scheme with a mirror, as shown in Fig. 1. 
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Fig. 1 

We shall use the letters V, V0, 2So, and ~0 to denote the velocity 
of the undisturbed flow, the free-jet velocity, the length of the arc 

L, and the value of the velocity potential at the separation points, 
respectively. 

Let the distribution of the modulus of the velocity be given on 
the arc in the form of a function of the arc abscissa, 

V = V d  (s) (s = S / S o, O % s ~ < l ) ,  

The function/(s) is assumed to be single-valued, positive, and 

satisfies a HOlder condition and the conditions f(0) = 0,/(i) = I. 

It is required to construct the form of the contour L and the form 

of the free jets, also to find the resistance of the arc. On the strength 

of symmetry, we shall consider only the flow in the second quadrant 

of the physical z-plane. 

2. We shall consider the complex velocity potential W = ~0 + i~ at 

point C, and also the stream function ~ on the streamline AOBCB'O'A, 

to be equal to zero. Then the region of variation W will be the second 

quadrant of the plane. The function W(~) mapping the region of va- 

riation W onto the first quadrant of the auxiliary variable ~ = g + i~ 

with correspondence of the points shown in Figs. I, 2, and 3 is easily 

found, 

90 KY-+ a~ w(~)=-- VC~+ ~ (2.1) 

On the arc L 

s 

9 = __ 9~ + V~,o ~ l (s) ds ' r 9 0 V l + a ~  (2.2) a 
o 

From (2.3.) and (2.2), we find the relationship S(~) establisl-dng the 
correspondence between points of the arc L and the points of the seg- 
ment [ - 1 ,  1] of the g-axis of the g-plane: 

s 

o 

We introduce the Zhukovskii function 

d W  ~ In V F ( ~ ) = l n ( ~ 0  - ~ / =  < - - i ~ .  (2.4) 

The function F(~) is real and continuous on the imaginary u-axis 
of the E-plane. We shall extend it to the entire upper half-plane. Now, 
F(~) is defined and analytic over the entire upper half-plane and satis- 
fies the following boundary conditions: 

R e y ( ~ ) = ~  1 0 for [ ~ . t > t  , 
lnJ for I ~ . ] ~ l  . 

As is well known, the problem of reconstructing the real part of 

a function which is analytical in the upper lialf-plane and given on 

the real axis is solved by a Cauchy type integral (refer, for example, 

[4]) 

r 
i t' In~(t~ 

F ( ~ ) :  ~ ~ ~dt. (2.5) 
-1 

The function z(~) is now determined from the relationships (2.1), 
(2.4), and (2.5): 

(~ + aD"h 

Separating the real and imaginary parts of (2.6), and passing to 
the limit with g ~ ~, we obtain: 

the equation for the contour, 

o 

~0 y l +  a 2 f E~ 
Y - -  Vo ! ][s(~)l(~2_]_a~) % s inl (~)d~ 

1 

--1 

the equation for the jets, 

x = x o  Vo ' (~2-~-a~)"h c~ q) (~) d~l 

Y=Y~ 9~ ]/'i+ h~ i Vo (~2 @ a2)"/: s i n  �9 (~ )  d ~  
1 

1 
t I> l ) .  (2.8) ( O ( ~ ) =  -~- i l t ~  dt' I t  

- 1  

Here x0, Y0 are the coordinates of the separation point of a jet. 
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Fig. 2 

8. Now, we shall define the parameters included in the solution. 
It is necessary that the following conditions be satisfied in the solu- 

tion of the problem: 

d W  x. ~)~=ai = v~~ [9 (s)L=l = - -  90. 
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It can be shown that they are transformed to the form 

Vco 
In ~ = a (a). 

Here 

(a.~) 

a I n /  
a (a) = -~- ~ dr, - -  g)o = - -  eh + VoSo I (s) de. (3.2) 

- - 1  0 

These equalities ate the equations for determining the parameters 
a and % for the given cavitation number Q = V0 z /V~  z - 1 and the 
given length of the arc S 0. 

4, Making use of the Bernoulli integ:aI, the expression for the 
resistance can be written in the form of 

1 

R = pVo*S, f [t - -  t s (s)] s in  0 (s) (Is 
o 

or, going from the variable s to the variable ~, 

1 

I t  - -  p Is (UI 
B = pVo*So l [S (~)] ( ~  + a,), h s in I (~) d~ . 

o 

(4.1) 

5. Let us consider a special case. Let the function/(s) be of the 
form 

As 
l (s) - I/'B' - -  s s (X.  B = eonst). 

On substituting ~his expression in (2.3) and (3.2), we obtain 

% u a* (P0 ] / 1  + a' 
~c~-q_ a* a + VoS,.A (B - -  "I/ 'B~--~-- ~*) ,  

aVoSo 
A (~ -  y~-~-~). - - ~ o  := ~-|-}-  a~--a 

Let A= a, B=(l+d z)~/~ Then 

% =  . ' v , s , ,  ~ ( ~ ) =  V ~  ' l h ( U l = ~ .  (~.~) 

The values of the integrals J(g), ~(g), and G(a) are found in [3], 

I ( ~ ) =  2 T N(~), ~ ( ~ ) = - ~ - a r e s i n - ~ - @ - ~ N  ~ ]  (5.2) 

t l n l / t + a ~ - - t  1 ( t )  
G ( a ) =  ~ -  2a + - - ~  e re tg -~-  l n a +  

i L{are ~ - ) +  t + ~ tg -~- L (are tg a), (s .3) 

2i '  1+" i N (x) = ~ -  -~- In ~ a'c, L (x) = - -  In cos x&r (5.4) 
o o 
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Fig. 3 

Substituting (5.1) in (2.7) and (4.1) and (5.2) in (2.8), we obtain: 
the equation of the contour 

t ~')'/' [ - ~  N (~) ]  d ~ ,  x =  a ~ g ~ S o . f  ( a ~ +  s in  " ~ 
o 

Y = a *  t / ~ s "  (aS+ ~,)v, cos - V N  (U d~, l ~ I < t ~  
o 

the equation of the jets 

t a '  g t - ' ~ S ~  ( a a + ~ 2 ) , / ,  cos ~ - a r c s i n ~ -  + -T N d~, 
1 

u ----- yo-Sc 

r 

! ~ [-~12 arcsi n ' -ka ~ u (a,+~z),/, sin -~- + 

the resistance of the arc 

1 

R = pVdSoaS V'~ma2 f 
o 

(aS+~D,/, cos N(~)  d~. 

Bearing (5.4) in mind, we rewrite Eq. (3.1), 

Voo = 1 ] / l + a ' ~ - - i  i ( a r e t g ~ _ ) l n a  + In ~ -~- In 2a ~- -~- 

t (arc tg I t + - ~ L  -~-) + -~  L(arctga) 

0[ I 2 a 
11 
G 
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Fig. 4 

The length and width of a cavity are found by the following formulas: 

co 

z = z {*~ + a* lAt--T~*s~ f (a, + p)v, x 

1 

• cos [-~- arc sin --~- -{- -~- N (---~)] d~} , 

1 (a* + 

t 1 ,t 

Figure 4 shows the curve of the cavitation number Q versus the 
parameter a. 

6. We shall now give the dependence of the velocity on the arc 
in parametric form, 

V = VoF, (u), ~ = ,.%F, (u), 

where FKu ) and Fz(u ) are single-valued positive functions u 6 [41, uz ] 
satisfying a HOlder condition and the conditions 

Y~(uO = F, (uO = O, Y~ (~,) = F , (u , )  = I .  

The given problem can be reduced to the preceding one in the 
following manner: 

l (s) = ! [s (~)] = & [u (~)]. 

The relationship u(~) is found from the equation 

~o V t +  a 2 
y-~-y-~a z ==--t~I+VoSo ~ F l ( u ) F z ' ( u ) d u .  (6.1) 

u l  
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The equation for finding ~Po is rewritten as 

% = - -  ~ + VoSo I F~ (u) F2' (u) ~l~,. (6 2) 
U l  

For example,  let 

( t - , , / " ,  ( , ,  + l )  , , ,h ,  

1 

i (uX-t)udu c o . t ) .  

0 

Substituting the expression for Ft(u ) and Fz(u) in formulas (6.1) and 
(6.2), we obtain the equations for finding the relationships u({) and 
~00, respectively: 

1/~-F ~-" ~ f~  . . . .  -' V~-~ ' 
~P0(~ F ~ ) =  2E~--~" ( ~ 7 ,  ~ ~,Uz]' )" 

We set 13= (1+a2)</a .  Then 

%= A I # l ~  -;' . ( ~ ) : 1 / t - - ~ ,  ][s(~)]= t + 1 / - ~  

We shaU write the values of the integrals [3] I(g) and c)(g) in this 

ease, 

Substituting (6.3] in (2.7], we obtain the equation for the contour: 

%1/-1=- a'-' ~~ 1 - - 1 / l -  ~2 
0, Y 

0 

Thus, we have obtained rile flow around a plate arranged normal 
to the flow. 

The equation for the jet and the resistance of rite contour are 
found from formulas (2.8) and (4,.1), respectively. On computing the 
value of G(a) for the given case and substituting it in formula (3.1), 
we obtain an equation for determining the parameter a. 

f h e  aufl~or thanks G. N. Pykhteev for advice on solving this 
problem. 
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